Series SSJ/1

Set No. 4

अनुक्रमांक										
Roll No.										

प्रश्न-पत्र कोड Question Paper Code 465/1/4

छात्र प्रश्न-पत्र कोड को OMR शीट में आबंटित जगह में लिखें।

Candidates must write the Question Paper Code in the space allotted in the OMR Sheet.

नोट / NOTE :

- (i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ट 15 हैं।
 - Please check that this question paper contains 15 printed pages.
- (ii) प्रश्न-पत्र में ऊपरी दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को छात्र OMR शीट में उपयुक्त स्थान पर लिखें। Question Paper Code given on the top right hand side of the question paper should be written in the appropriate place in the OMR Sheet by the candidate.
- (iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 50 बहुविकल्पीय प्रश्न (MCQs) हैं ।
 Please check that this question paper contains 50 Multiple Choice Questions (MCQs).
- (iv) परीक्षा शुरू होने के वास्तविक समय से पहले इस प्रश्न-पत्र को पढ़ने के लिए 20 मिनट का अतिरिक्त समय आबंटित किया
 गया है ।
 - 20 minute additional time has been allotted to read this question paper prior to actual time of commencement of the examination.

व्यवहारिक गणित

APPLIED MATHEMATICS

Term-I

निर्धारित समय: 90 मिनट अधिकतम अंक: 40

Time allowed: 90 minutes Maximum Marks: 40

General Instructions:

- (i) This question paper contains 50 questions out of which 40 questions are to be attempted as per instructions. All questions carry equal marks.
- (ii) The question paper consists three Sections - Section A, B and C.
- (iii) Section A contains of 20 questions. Attempt any 16 questions from Q.No. 1 to 20.
- (iv) Section B also consists of 20 questions. Attempt any 16 questions from Q.No. 21 to 40.
- (11) Section C consists of a Case Studies containing 5 questions (Q No. 46 - 50) Attempt

(vi) (vii)	any 8 from Q.No. 41 to 50. There is only one correct option for every multiple choice question (MCQ). Marks will not be awarded for answering more than one option. There is no negative marking.									
(010)	11101	to No negative in		SECTION A	A					
In this 1 mark		on, attempt any	16 q	uestions out of q	uestio	ns no. 1 - 20 . E	ach qi	uestion is of 16×1=16		
1.	If 10	$0 \equiv x \pmod{7}$, then	n the l	east positive valu	e of x	is:				
	(a)	2	(b)	3	(c)	6	(d)	4		
2.	If τ(n) denotes the nun	nber o	f divisors of n, the	n the	value of τ(15) is :				
	(a)	3	(b)	4	(c)	5	(d)	7		
3.		man rows 32 km (downs	tream and 14 km	upstr	eam in 6 hours ea	ch, the	en the speed		
	(a)	2 km/h	(b)	1.5 km/h	(c)	2.5 km/h	(d)	2·25 km/h		
4.		2 km race, P can Q can give R a st			and R	a start of 560 m.	Then,	in the same		
	(a)	360 m	(b)	380 m	(c)	400 m	(d)	430 m		
5.						rs respectively. Pip				
	(a)	2 hours	(b)	$2\frac{3}{4}$ hours	(c)	3 hours	(d)	$3\frac{9}{17}$ hours		
6.	The s	solution of $\frac{x-3}{x+5}$:	> 0, x	$\neq -5, x \in \mathbf{R}$ is:						
	(a)	x > 3			(b)	x < -5				
	(c)	x<-5 or x>3			(d)	no solution				

	(c) $P(x) = R(x) -$	- C(x)	(d) P(x) =	R(x) . C(x)	
12.	If 'm' is the mean o	of Poisson distribution,	then its standard	deviation is give	en by :
	(a) \sqrt{m}	$(b) \ m^2$	(c) m	(d)	$\frac{\mathbf{m}}{2}$
13.	The normal distrib	oution curve is symmetr	rical about :		
	$(a) \qquad X = \mu$	(b) $X = \sigma$	(c) $X = \frac{\mu}{\sigma}$	(d)	$X = \frac{\sigma}{\mu}$
14.	Let X be a discrete	e random variable whos	e probability dist	ribution is given	below:
	$X = x_i$:	0 1 2	3 4 5	6 7	
	$P(X = x_i)$:	0 1 2 0 2K 2K 3	3K K ² 2K ²	$7K^2$ $2K$	
	The value of K is:				
	(a) $\frac{1}{10}$	(b) -1	(c) $-\frac{1}{10}$	(d)	$\frac{1}{5}$
15.	In a box of 100 bu	ılbs, 10 are defective. V	What is the proba	bility that out o	f a sample of
	5 bulbs, none is de	efective ?			
	(a) $\left(\frac{9}{10}\right)^5$	(b) $\frac{9}{10}$	(c) 10 ⁻⁵	(d)	$\left(\frac{1}{2}\right)^2$
			2		DTO
465/	1/4	P	age 3		P.T.O.
465/	1/4	P	aye s		P.1.0.

If matrix A is given by A = $\left[a_{ij}\right]_{2\times 2},$ where a_{ij} = i + j, then A is equal to :

If A is a square matrix such that $A^2 = A$, then $(I + A)^2 - 3A$ is equal to:

2A

81

a < 0

(b)

(b)

(b)

The function $f(x) = a^x$ is increasing on R, if:

(a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$

If A is a square matrix of order 3×3 such that |A| = 4, then |3A| is equal to:

(c)

(c)

If C(x) and R(x) are respectively Cost function and Revenue function, then the Profit

3I

108

(c) 0 < a < 1

(b) P(x) = C(x) + R(x)

(d)

(d)

Α

256

a > 1

7.

8.

9.

10.

11.

(a) I

(a)

(a)

(a)

27

a > 0

function P(x) is given by:

P(x) = R(x)

16.	If X is a normal variate with mean μ and standard deviation $\sigma > 0$, then the new random variate $Z = \frac{X - \mu}{\sigma}$ is a variate with :									
		σ								
	(a)	Mean = 1, Stand	ard de	eviation = 0	-					
	(b)	Mean = 1, Stand	ard de	eviation = 1						
	(c)	Mean = 2, Stand	ard de	eviation = 1						
	(d)	Mean = 0, Stand	ard de	eviation = 1						
17.		mean E(x) of the				throw	ing a die havin	g writter	n 1 on three	
	(a)	1	(b)	2		(c)	5	(d)	$\frac{8}{3}$	
18.	Whic	h of the following	index	number sa	tisfies	the "t	ime reversal tes	t"?		
	(a)	Fisher's ideal ind	lex nu	ımber						
	(b)	Laspeyres' index	num	ber						
	(c)	Paasche's index	numb	er						
	(d)	None of these								
19.	То са	lculate Paasche's	price	index, the v	weights	s are t	aken as :			
	(a)	\mathbf{p}_0	(b)	\mathtt{p}_1	_	(c)	\mathbf{q}_0	(d)	${\bf q}_1$	
20.	Give	n that $\sum \mathbf{p}_1 \mathbf{q}_1 = 86$	60, Σ1	$p_0 q_0 = 520$	Σ p. q	o = 63	$0 \text{ and } \sum \mathbf{p}_{\mathbf{q}} \mathbf{q}_{\mathbf{r}} =$	730, wh	ere subscript	
	0 an	d 1 are used for			_					
	(a)	117.81	(b)	119.5		(c)	121.15	(d)	123.35	
				SECT	ION I	3				
In this 1 mark		on, attempt any	16 qu				s no. 21 - 40 .	Each q	uestion is of 16×1=	16
21.	The	remainder when 5	⁶¹ is d	livided by 7	is:					
	(a)	1	(b)	2		(c)	4	(d)	5	
22.		res of a mixture o								
	(a)	7	(b)	4		(c)	5	(d)	6	
465/1/	4				Page	4				

23.	Pipe A can fill a tank 6 times faster than a pipe B. If B can fill a tank in 21 minutes, then the time taken by both the pipes together to fill the tank is:							
	(a) 3 minutes	(b) $4\frac{1}{2}$ minutes	(c)	7 minutes	(d)	9 minutes		
24.		nts of two partners A an the money for 8 months						
	(a) 11 months	(b) 10 months	(c)	9 months	(d)	5 months		
25.	The solution set of the	inequation $ x + 2 \le 5$	is:					
	(a) (-7, 5)	(b) [-7, 3]	(c)	[-5, 5]	(d)	(-7, 3)		
26.	If $A = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$3 = \begin{bmatrix} 1 & -2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $ and AB	= I ₃ ,	then (x + y) equals	:			
	(a) 0	(b) -1	(c)	2	(d)	-2		
27.	If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ a & b & 2 \end{bmatrix}$, then	${ m aI}$ + ${ m bA}$ + ${ m 2A^2}$ equals :						
	(a) A		(b)	- A				
	(c) abA		(d)	None of these				
28.	If $A^2 - A + I = O$, then	the inverse of matrix A	is:					
	$(a) A^2$	(b) A + I	(c)	I-A	(d)	A-I		
29.	If the points (1, 3), (x,	5) and (2, 7) are collinea	r, the	n the value of x is	:			
	(a) 2	(b) $\frac{3}{2}$	(c)	1	(d)	$\frac{3}{4}$		
30.	If $y = Ae^{5x} + Be^{-5x}$, th	nen $\frac{d^2y}{dx^2}$ is:						
	(a) 25 y	(b) 5 y	(c)	$-25 \mathrm{\ y}$	(d)	15 y		
31.	The point on the curve	$x^2 = 2y$ which is neares	st to th	ne point $(0,5)$ is :				
	(a) $(2\sqrt{2}, 4)$	(b) $(2\sqrt{2}, 0)$	(c)	(0, 0)	(d)	(2, 2)		

32.	If the total revenue ($\stackrel{<}{\sim}$) received from the sale of x units of a product is given by :											
	$R(x) = 3x^2 + 36x + 5,$											
	then	then the marginal revenue, when $x = 15$, is										
	(a)	116	(b)	96	(c)	90	(d)	126				
33.	The	equation of norma	al at t	he point (1, 1) to t	he cur	$ve 2y + x^2 = 3 is :$						
	(a)	x + y = 0	(b)	x - y = 0	(c)	x + y = 1	(d)	x - y = 1				
34.		_				er of heads and the		mber of tails				
	(a)	0, 1, 3, 5	(b)	0, 2, 4, 6	(c)	0, 2, 5, 6	(d)	1, 3, 4, 5				
35.		ne mean of a bind rval:	omial	distribution is 8	1, the	n the standard de	viatio	n lies in the				
	(a)	[0, 9)	(b)	(0, 9]	(c)	[0, 3]	(d)	(0, 3]				
36.	If a	random variable 🛚	(has	the Poisson distri	bution	with mean 2. The	n, P(X	> 1·5) is:				
	(a)	$2\mathrm{e}^{-2}$	(b)	3e ⁻²	(c)	$1 - 2e^{-2}$	(d)	$1-3\mathrm{e}^{-2}$				
37.		re are 50 telephor usy is 0·1. The pro				probability that ar busy is :	ny one	of them will				
	(a)	$\frac{5^0 e^{-5}}{0!}$			(b)	$1 - \frac{5^0 e^{-5}}{0!}$						
	(c)	$\frac{5^{50} e^{-5}}{50!}$			(d)	$1 - \frac{5^{50} e^{-5}}{50!}$						
38.		e relative of suga ₹ 30 per kg in 20				pared to the year	2019	If the sugar				
	(a)	₹ 15 per kg			(b)	₹ 40·50 per kg						
	(c)	₹ 45·20 per kg			(d)	₹ 65 per kg						
39.	If Σ	W log p = 199·50	and Σ	W = 100, then the	e weig	hted index number	ris:					
	(a)	120.86	(b)	88.86	(c)	98.86	(d)	78.86				
40.	The	condition for the	ime r	eversal test to hol	ld good	l with usual notati	on is :					
	(a)	$P_{bc} \times P_{cb} = 1$			(b)	$\mathbf{P}_{\mathrm{bc}} \times \mathbf{P}_{\mathrm{cb}} = 0$						
	(c)	$\mathbf{P_{bc}}+\mathbf{P_{cb}}=1$			(d)	$\frac{P_{cb}}{P_{bc}} \ = 1$						

Page 6

465/1/4

SECTION C

		n, attempt any 8 o. 46 – 50 are bas					s no.	41 – 50 . E	ach ques	tion is	s of 1 mark.	8×1=8
41.	The	least value of 'a' s	uch th	at th	ne func	tion f(x) = x ²	+ ax + 1 i	s increas	ing o	n (1, 2) is:	
	(a)	0	(b)	- 1			(c)	-2		(d)	-4	
42.		demand function $x = 82 - p$				given	by:					
		its total cost func TC = 100 + 60x										
		naximum profit,			fxis:							
	(a)	15	(b)	14			(c)	13		(d)	11	
43.		mean of the prob ce, is :	ability	dist	ributio	on of th	ie nun	nber of do	ublets in	4 thr	ows of a pai	r
	(a)	1	(b)	$\frac{2}{3}$			(c)	$1\frac{3}{5}$		(d)	$2\frac{2}{3}$	
44.	certa devia made	known from the in community b ation of 31. What in the communi	etween percenty ty betw	n 3 j ntage ween	p.m. a e of the 3 p.m	nd 4	p.m. l will th .m. ? [nas a mea ere be mo Use : P (0	n of 35 re than 4	2 and 100 te 0 = 0	l a standar lephone call 4394]	d
	(a)	11.4%	(b)	9.69	%0		(c)	7.08%		(d)	6.06%	
45 .	The	index number of	the fol	lowin	ng data	1 :						
		Relative Index	: 1	181	116	110	157					
		Weight:		4	12	3	7					
	is:											
	(a)	118.74	(b)	136	S-34		(c)	142.04		(d)	146·14	

Case-Study:

Two products P and Q are produced such that 0.4 tonne of P and 0.7 tonne of Q are required to produce one tonne of P. Similarly, 0.1 tonne of P and 0.6 tonne of Q are required to produce one tonne of Q. The economy needs 68 tonnes of P and 102 tonnes of Q.

Based on the above information, answer the following questions:

46. The technology matrix A is:

47. The demand matrix is:

(c)
$$\begin{bmatrix} 102 \\ 68 \end{bmatrix}$$

48. (I - A) is:

(a)
$$\begin{bmatrix} 0.6 & -0.6 \\ -0.7 & 0.9 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0.4 & -0.1 \\ -0.7 & 0.6 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 0.6 & -0.7 \\ -0.1 & 0.4 \end{bmatrix}$$

$$(\textbf{d}) \quad \begin{bmatrix} 0.6 & -0.1 \\ -0.7 & 0.4 \end{bmatrix}$$

$(I - A)^{-1}$ is: 49.

(a)
$$\frac{1}{0.17}\begin{bmatrix} 0.6 & 0.1\\ 0.7 & 0.4 \end{bmatrix}$$

(b)
$$\frac{1}{0.17}\begin{bmatrix} 0.4 & 0.1\\ 0.7 & 0.6 \end{bmatrix}$$

(c)
$$\frac{1}{0.17}\begin{bmatrix} 0.4 & 0.7\\ 0.1 & 0.6 \end{bmatrix}$$

(d)
$$\frac{1}{0.17}\begin{bmatrix} 0.9 & 0.6\\ 0.7 & 0.6 \end{bmatrix}$$

50. The gross outputs of P and Q are: